Apr 2, 2016 | By Alec

It’s funny how, despite a crazy pace of technological development, we are still largely dependent on a few core technologies that have hardly changed over the last few decades. A tube-fin heat exchanger, which forms the basis of every cooling unit from your refrigerator to sewer treatment plants and power stations, is one of those technologies. A crucial system, but one that was always too costly to improve. Until now that is, because researchers from the University of Maryland have used direct metal 3D printing to make a cheaper, single-piece and more efficient next generation heat exchanger.

This is a very important breakthrough, because heat exchangers are vital for life in the modern world as we know it. Almost every single heating or cooling system relies on an exchanger, which quite literally exchanges heat from one source to another. It’s become a multi-billion-dollar industry that touches every industry imaginable. That means that a more efficient alternative could have a huge impact. But despite its widespread use, the tube-fin design has remained largely unchanged for decades, with previous attempts to innovate failing due to cost concerns every time.

But that’s where 3D printing comes in, which his not bogged down by costly and material wasting practices like traditional casting. That’s why the University of Maryland, with backing from 3D Systems and the U.S. Department of Energy’s Building Technologies Office, turned to metal 3D printing. 3D Systems’ direct metal 3D printing technology allowed them to, in a nutshell, design a more efficient, unconventional shape. Technically, it’s a 1 kilowatt (kW) unique miniaturized air-to-refrigerant heat exchanger, which has been 3D printed into a single solid piece.

What’s more, 3D printing sped up development considerably. Where traditional heat exchanging prototypes take months to develop, this 3D printed heat exchanger was completed in just a few weeks, especially because alterations and experimental designs were produced much more quickly. The result weighs 20% less than its predecessor, is 20% more efficient and is produced much quicker than existing heat exchangers. Its single, solid shape means it’s also far more resistant to pressure or leakage, giving it a longer shelf-life, improved performance and more efficient heating or cooling. It also, of course, saves on material waste.

Rather unsurprisingly, its developers are quite optimistic about its revolutionary potential. The current model can already be used for commercial and residential air-conditioning or heat pump systems (of varying sizes), and paves the way for industrial versions as well. They believe it has the potential to help significantly reduce the nearly 7 quads of energy that the US population consumes annually for just heating, ventilation, conditioning, and refrigeration.

Taking full advantage of 3D printing potential, the researchers are currently developing a 10 kW prototype as well, which will be tested and demonstrated in a three-ton heat pump along with its brother. If all goes well, these new heat exchangers could be commercially produced within the next five years.



Posted in 3D Printing Application



Maybe you also like:


gms wrote at 5/27/2016 3:46:45 PM:

salamo alikom

RobinLeech wrote at 4/2/2016 6:58:18 PM:

What is really needed is one that is passive and doesn't require large amounts of air flow. Even if it's 20% better it can still get clogged with debris/dust and lose efficiency. Chances are also that such a technology wouldn't mean 20% better air conditioners- it just would mean 20% smaller heat exchangers that would get clogged up 20% faster.

Leave a comment:

Your Name:


Subscribe us to

3ders.org Feeds 3ders.org twitter 3ders.org facebook   

About 3Ders.org

3Ders.org provides the latest news about 3D printing technology and 3D printers. We are now seven years old and have around 1.5 million unique visitors per month.

News Archive