Jun 21, 2017 | By Benedict

Nanotechnologists from Rice University and China’s Tianjin University have used laser 3D printing to fabricate centimeter-sized objects of atomically thin graphene. The research could help create industrial quantities of bulk graphene.

Nickel functions as a catalyst to turn laser-melted sugar into graphene

It’s hardly surprising that graphene, a two-dimensional sheet of pure carbon, is a subject of great interest for materials scientists. Not only is graphene incredibly strong, it’s also conductive, and can therefore be used in a wide range of applications, from nanoelectronics to bone implants.

The challenge is getting reasonably sized quantities of 3D graphene. To do the most useful stuff with the material, bulk quantities are needed, and scientists have so far had trouble making graphene on that scale in an efficient way.

A team of nanotechnologists from Rice University and China’s Tianjin University recently used 3D laser printing to fabricate centimeter-sized objects of atomically thin graphene, in a research project that could someday lead to the simple fabrication of bulk quantities of graphene from non-graphene starting materials.

For the research project, the laboratory of Rice chemist James Tour joined forces with the labs of Rice’s Jun Luo and Tianjin’s Naiqin Zhao to adapt a common 3D printing technique. The technique, conducted at room temperature, was used to make fingertip-size blocks of graphene foam. No molds were required, and the starting materials consisted of just powdered sugar and nickel powder.

3D printing was used to produce a porous graphene foam

“This simple and efficient method does away with the need for both cold-press molds and high-temperature CVD treatment,” said co-lead author Junwei Sha, a former student in Tour’s lab and current postdoctoral researcher at Tianjin.

“We should also be able to use this process to produce specific types of graphene foam like 3D printed rebar graphene as well as both nitrogen- and sulfur-doped graphene foam by changing the precursor powders.”

To create their blocks of graphene, the researchers used a CO2 laser—the kind used by laser sintering 3D printers. When the laser was shone onto the sugar and nickel powder, the sugar was melted and the nickel acted as a catalyst. A low-density graphene with large pores then formed as the mixture cooled down. (These pores accounted for 99 percent of the material’s volume.)

This laser shining process was repeated over and over again with different parameters, as the researchers sought to find the optimal amount of time and laser power that would maximize graphene production.

James Tour, the T.T. and W.F. Chao Chair in Chemistry at Rice University

Having settled on an effective combination of parameters, the researchers believe that their technique could have many uses across different fields.

“The 3D graphene foams prepared by our method show promise for applications that require rapid prototyping and manufacturing of 3D carbon materials, including energy storage, damping, and sound absorption,” said co-lead author Yilun Li, a graduate student at Rice.

The research paper has been published in the American Chemical Society journal ACS Nano. Additional co-authors include Rodrigo Villegas Salvatierra, Tuo Wang, Pei Dong, Yongsung Ji, Seoung-Ki Lee, Chenhao Zhang, Jibo Zhang and Pulickel Ajayan, all of Rice, and Robert Smith of Qualified Rapid Products in West Jordan, Utah.

“This study is a first of its kind,” commented Tour. “We have shown how to make 3D graphene foams from non-graphene starting materials, and the method lends itself to being scaled to graphene foams for additive manufacturing applications with pore-size control.”



Posted in 3D Printing Technology



Maybe you also like:


Leave a comment:

Your Name:


Subscribe us to

3ders.org Feeds 3ders.org twitter 3ders.org facebook   

About 3Ders.org

3Ders.org provides the latest news about 3D printing technology and 3D printers. We are now seven years old and have around 1.5 million unique visitors per month.

News Archive