Jun 15, 2018 | By Thomas

Kuen-Ren “Roland” Chen, an assistant professor in the School of Mechanical and Materials Engineering at Washington State University has received a U.S. Department of Defense grant to develop a more convenient, less expensive and less painful way to treat serious eye diseases.

According to a report commissioned by Prevent Blindness America, eye disorders and vision loss treatment cost nearly $139 billion every year. But, delivering drugs into delicate eyes can be very difficult. While eye drops may be a good option, they often don’t work well because tears dilute them. There is a physical barrier between most parts of the eye and blood vessels, so doctors often use laser therapy and direct eye injections. Unfortunately periodic direct eye injections are expensive, costing nearly $2,000 a shot. This makes it important to use technology that can deliver drugs in an efficient way to minimize costs.

Chen has been awarded an $264,000, 18-month exploratory grant to use 3D printing to develop a programmable microneedle array that can deliver drugs directly into the eye in a sustained manner.

Mock-up prototype of the microneedle array. Item is not made of the final material with the programmable feature. It shows the relational size of the microneedles and the actual device. The ultimate overall diameter will be smaller than what’s shown in the photo. Image credit: WSU.

Microneedles, an alternative to standard hypodermic needles, are tiny, minimally invasive needles that can be stacked next to each other in a group to form a microneedle array. Chen, along with WSU PhD student Maher Amer, is working to create an innovative “locking” and “unlocking” technology for an array of 3D printed microneedles.

Chen’s technology, which uses a polymer gel to lock the needles in place, would allow doctors to attach the microneedle array to the eye to steadily deliver the drug for a long period and then easily detach it later.

The steady delivery would provide more efficient drug delivery, and it will also lower the cost by reducing the amount of the drug that is required for treatment. According to Chen, the 3D printed  microneedle array technology would also be less invasive, cause less pain than direct injections, and have fewer side effects.

The researchers are currently developing the mold required for manufacturing the microneedles and testing its locking mechanism. They initially plan to develop their microneedle array to deliver the drug into the eye for a month, which could more effectively reduce abnormal blood vessel growth than a single direct shot.

In the future, the technology could be used to treat major eye diseases such as diabetic retinopathy and age-related macular degeneration.

 

 

Posted in 3D Printing Application

 

 

Maybe you also like:


   


Ben Dover wrote at 6/17/2018 10:00:14 AM:

We Prey now.



Leave a comment:

Your Name:

 


Subscribe us to

3ders.org Feeds 3ders.org twitter 3ders.org facebook   

About 3Ders.org

3Ders.org provides the latest news about 3D printing technology and 3D printers. We are now six years old and have around 1.5 million unique visitors per month.

News Archive