Jun 14, 2016 | By Benedict

A team of students from Gonzaga University has used 3D printing to develop an Ankle Foot Orthosis (AFO) which can be produced in just two days. Normal production time for AFOs, which are used to treat foot and ankle disorders in children, is around four weeks.

Since children tend to run around all day, it’s easy to forget that youngsters occasionally require the kind of advanced healthcare treatment usually reserved for adults. Fortunately, many foot and ankle disorders which affect children can be treated with the use of an Ankle Foot Orthosis, a kind of brace which provides a stable support for a child’s lower extremities, allowing them to learn (or relearn) how to walk and balance. Despite the importance of AFOs, their complicated fabrication process—scanning, molding, vacuum heat forming, and fitting—means they can take up to four weeks to make. Worse still, many parents struggle to foot the ~$2,000 bill slapped on such devices.

Since AFOs can be expensive and slow to make, a group of students at Gonzaga University, a Catholic college located in Spokane, Washington, wanted to see if 3D printing could be used to speed up and reduce the cost of the process. In late 2015, the team gathered to start researching potential rapid prototyping techniques which it could use to “create a simple, easily 3D printed AFO with the best composition and geometry to meet strength and comfort requirements for patients.”

To meet those strength and comfort requirements, the Gonzaga University researchers first used a 3D scanner to obtain accurate measurements of a patient’s foot and ankle. Next, they used that 3D scan to create a 3D model for the AFO using CAD software—the AFO, of course, needed to be just slightly larger than the patient’s foot and ankle, while closely following its shape. Several different 3D printing materials (PLA, Polypropylene, Carbon Fiber PLA, PETG, and Nylon) were then tested, before the AFO could finally be 3D printed with the help of 3D Platform, an Illinois-based 3D printing service provider.

“We want to 3D print large braces (up to 18 inches), and we need to print with a variety of materials as we research the best design for the braces,” said McKenzie Horner, one of the student researchers at Gonzaga University, at the time of the project. “3D Platform helped solve the problem by providing a versatile large-format 3D printer that helps us with our materials research and AFO printing. We were able to print a full-scale proof of concept immediately, and the open platform software capabilities allow us to prepare a print easily from a doctor’s 3D scan of a patient’s leg.”

The students’ tests revealed that PLA and PETG would be the most suitable materials for 3D printing an AFO, since they both provided ample comfort and strength whilst still keeping costs at a minimum. To the students’ great delight, making these PLA and PETG braces took only two days—far less than the four weeks usually required to make such a device. Printing time for each AFO was around 16 hours, with the digital model configuration taking just a few minutes. As well as reducing material costs, the 3D printing process also helped to reduce potential labor costs, with several steps of the fabrication procedure either shortened or completely eliminated.

With their success demonstrating how additive manufacturing can so often be a step in the right direction, the Gonzaga University students plan to continue using 3D printing in order to create affordable and effective medical solutions.



Posted in 3D Printing Application



Maybe you also like:


Amy Davis wrote at 6/15/2016 4:52:20 AM:

This seems like a really cool project. I feel that you may be misguided in what all goes into fitting a device. I feel that some factor were not considered. I am interested in how you decided the best materials. Did you do durability and stress tests. Usually the strength and flexibility properties are selected base on the presentation of the patient. Yes far less time when only providing the devices for a small group of people but if you multiple that by 100s and the processes is actually longer. The actual hours in fabricating an Afo is no longer than a few hours unlike the time to print and a few hours of modication time to create a device to treat a medical condition. Most of that 4 week wait time is insurance approvals and administrative process. I am interested in how this technology can innovate the orthotic and prosthetic industry. Hopefully opening up the world to innovation of design and materials. There a few things preventing it from currently becoming a standard and that is clinical based evidence ( research ), cost effectiveness and time to print. Keep up the work!

Leave a comment:

Your Name:


Subscribe us to

3ders.org Feeds 3ders.org twitter 3ders.org facebook   

About 3Ders.org

3Ders.org provides the latest news about 3D printing technology and 3D printers. We are now seven years old and have around 1.5 million unique visitors per month.

News Archive