Jul 20, 2017 | By Tess

An ongoing synthetic biology project at Harvard Medical School is using bacteria to transform carbon dioxide (CO2) into more useful compounds, such as plastic. The innovative process, while still in its early stages, could one day be used to create building materials on Mars (where the atmosphere is composed mainly of CO2), which could in turn be 3D printed into structures.

One of the project’s researchers, a postdoctoral fellow named Shannon Nangle, explained how she and her co-researchers were transforming a bacteria called R. eutropha into usable polymer compounds and the impact this process could have not only on Mars, but also here on Earth.

"[The bacteria] can actually fill up their cells with about 80 percent of this polymer," she said. "It's not an ideal material for industrial processing, so what we want to do is use metabolic engineering techniques to actually modulate the material properties of this polymer such that we can use it for 3D printing, injection molding, other industrial-type machining.”

Nangle is also working with a team from the Silver Lab to create what they are calling a “bionic leaf,” which uses the same principle of transforming CO2 into other compounds using bacteria. The bionic leaf could have important applications on Earth, as it is being developed as a way to combat global warming.

(Images: Jesse Costa / WBUR)

In short, the bionic leaf system uses solar energy to split water molecules (H2O) into oxygen and hydrogen. When the bacteria is introduced into the system, it consumes the hydrogen and uses it as an energy source.

The hydrogen-powered bacteria is then equipped to transform carbon dioxide from the air into different types of molecules. The process, says Nangle, is similar to photosynthesis, but is actually much more efficient.

"The CO2 can be used much in the way that plants use CO2," she explained. "The bacteria are already adapted to extract it from the air in the same way that plants are.” The bionic leaf device, however, is capable of removing 180 grams of CO2 out of 230,000 liters of air with every kilowatt hour of energy it uses. While these number may sound abstract, the scientists assure that this is an impressive efficiency.

Ultimately, the goal is to be able to create usable bioplastics from CO2 using the bacteria method. On Earth it could mean a reduction of CO2 in the atmosphere, which traps heat and leads to global warming; on Mars it could mean a way to produce building materials locally using the CO2-rich air.

The research, which has received significant funding from Harvard, is in line with the belief of many scientists that colonies on Mars will likely have to be made from locally sourced materials using construction methods such as 3D printing.

 

 

Posted in 3D Printing Application

 

 

Maybe you also like:


   






Leave a comment:

Your Name:

 


Subscribe us to

3ders.org Feeds 3ders.org twitter 3ders.org facebook   

About 3Ders.org

3Ders.org provides the latest news about 3D printing technology and 3D printers. We are now six years old and have around 1.5 million unique visitors per month.

News Archive